Mario Lovicu
Technician
Area of interest:
As part of the study of autoimmune diseases in the Sardinian population:
• DNA extraction for the establishment of a bank of DNA samples to be used as controls
• PBMCs separations and B cells isolation, for the establishment of a bank of cell lines
• RNA extractions from PBMCs and other cell populations to study the expression of genes involved in autoimmune diseases
• collection of sera from volunteers of the Blood Transfusion Centre of Cagliari
Most significant publications:
2015
Marongiu, Mara; Marcia, Loredana; Pelosi, Emanuele; Lovicu, Mario; Deiana, Manila; Zhang, Yonqing; Puddu, Alessandro; Loi, Angela; Uda, Manuela; Forabosco, Antonino; Schlessinger, David; Crisponi, Laura
FOXL2 modulates cartilage, skeletal development and IGF1-dependent growth in mice Journal Article
In: BMC developmental biology, 15 , pp. 27, 2015, ISSN: 1471-213X.
@article{marongiu_foxl2_2015,
title = {FOXL2 modulates cartilage, skeletal development and IGF1-dependent growth in mice},
author = {Mara Marongiu and Loredana Marcia and Emanuele Pelosi and Mario Lovicu and Manila Deiana and Yonqing Zhang and Alessandro Puddu and Angela Loi and Manuela Uda and Antonino Forabosco and David Schlessinger and Laura Crisponi},
doi = {10.1186/s12861-015-0072-y},
issn = {1471-213X},
year = {2015},
date = {2015-07-01},
journal = {BMC developmental biology},
volume = {15},
pages = {27},
abstract = {BACKGROUND: Haploinsufficiency of the FOXL2 transcription factor in humans causes Blepharophimosis/Ptosis/Epicanthus Inversus syndrome (BPES), characterized by eyelid anomalies and premature ovarian failure. Mice lacking Foxl2 recapitulate human eyelid/forehead defects and undergo female gonadal dysgenesis. We report here that mice lacking Foxl2 also show defects in postnatal growth and embryonic bone and cartilage formation.
METHODS: Foxl2 (-/-) male mice at different stages of development have been characterized and compared to wild type. Body length and weight were measured and growth curves were created. Skeletons were stained with alcian blue and/or alizarin red. Bone and cartilage formation was analyzed by Von Kossa staining and immunofluorescence using anti-FOXL2 and anti-SOX9 antibodies followed by confocal microscopy. Genes differentially expressed in skull vaults were evaluated by microarray analysis. Analysis of the GH/IGF1 pathway was done evaluating the expression of several hypothalamic-pituitary-bone axis markers by RT-qPCR.
RESULTS: Compared to wild-type, Foxl2 null mice are smaller and show skeletal abnormalities and defects in cartilage and bone mineralization, with down-regulation of the GH/IGF1 axis. Consistent with these effects, we find FOXL2 expressed in embryos at 9.5 dpc in neural tube epithelium, in head mesenchyme near the neural tube, and within the first branchial arch; then, starting at 12.5 dpc, expressed in cartilaginous tissue; and at PO and P7, in hypothalamus.
CONCLUSIONS: Our results support FOXL2 as a master transcription factor in a spectrum of developmental processes, including growth, cartilage and bone formation. Its action overlaps that of SOX9, though they are antagonistic in female vs male gonadal sex determination but conjoint in cartilage and skeletal development.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
METHODS: Foxl2 (-/-) male mice at different stages of development have been characterized and compared to wild type. Body length and weight were measured and growth curves were created. Skeletons were stained with alcian blue and/or alizarin red. Bone and cartilage formation was analyzed by Von Kossa staining and immunofluorescence using anti-FOXL2 and anti-SOX9 antibodies followed by confocal microscopy. Genes differentially expressed in skull vaults were evaluated by microarray analysis. Analysis of the GH/IGF1 pathway was done evaluating the expression of several hypothalamic-pituitary-bone axis markers by RT-qPCR.
RESULTS: Compared to wild-type, Foxl2 null mice are smaller and show skeletal abnormalities and defects in cartilage and bone mineralization, with down-regulation of the GH/IGF1 axis. Consistent with these effects, we find FOXL2 expressed in embryos at 9.5 dpc in neural tube epithelium, in head mesenchyme near the neural tube, and within the first branchial arch; then, starting at 12.5 dpc, expressed in cartilaginous tissue; and at PO and P7, in hypothalamus.
CONCLUSIONS: Our results support FOXL2 as a master transcription factor in a spectrum of developmental processes, including growth, cartilage and bone formation. Its action overlaps that of SOX9, though they are antagonistic in female vs male gonadal sex determination but conjoint in cartilage and skeletal development.
Palomba, Grazia; Loi, Angela; Porcu, Eleonora; Cossu, Antonio; Zara, Ilenia; Budroni, Mario; Dei, Mariano; Lai, Sandra; Mulas, Antonella; Olmeo, Nina; Ionta, Maria Teresa; Atzori, Francesco; Cuccuru, Gianmauro; Pitzalis, Maristella; Zoledziewska, Magdalena; Olla, Nazario; Lovicu, Mario; Pisano, Marina; Abecasis, Gonçalo R; Uda, Manuela; Tanda, Francesco; Michailidou, Kyriaki; Easton, Douglas F; Chanock, Stephen J; Hoover, Robert N; Hunter, David J; Schlessinger, David; Sanna, Serena; Crisponi, Laura; Palmieri, Giuseppe
Genome-wide association study of susceptibility loci for breast cancer in Sardinian population Journal Article
In: BMC cancer, 15 , pp. 383, 2015, ISSN: 1471-2407.
@article{palomba_genome-wide_2015,
title = {Genome-wide association study of susceptibility loci for breast cancer in Sardinian population},
author = {Grazia Palomba and Angela Loi and Eleonora Porcu and Antonio Cossu and Ilenia Zara and Mario Budroni and Mariano Dei and Sandra Lai and Antonella Mulas and Nina Olmeo and Maria Teresa Ionta and Francesco Atzori and Gianmauro Cuccuru and Maristella Pitzalis and Magdalena Zoledziewska and Nazario Olla and Mario Lovicu and Marina Pisano and Gon{ç}alo R Abecasis and Manuela Uda and Francesco Tanda and Kyriaki Michailidou and Douglas F Easton and Stephen J Chanock and Robert N Hoover and David J Hunter and David Schlessinger and Serena Sanna and Laura Crisponi and Giuseppe Palmieri},
doi = {10.1186/s12885-015-1392-9},
issn = {1471-2407},
year = {2015},
date = {2015-05-01},
journal = {BMC cancer},
volume = {15},
pages = {383},
abstract = {BACKGROUND: Despite progress in identifying genes associated with breast cancer, many more risk loci exist. Genome-wide association analyses in genetically-homogeneous populations, such as that of Sardinia (Italy), could represent an additional approach to detect low penetrance alleles.
METHODS: We performed a genome-wide association study comparing 1431 Sardinian patients with non-familial, BRCA1/2-mutation-negative breast cancer to 2171 healthy Sardinian blood donors. DNA was genotyped using GeneChip Human Mapping 500 K Arrays or Genome-Wide Human SNP Arrays 6.0. To increase genomic coverage, genotypes of additional SNPs were imputed using data from HapMap Phase II. After quality control filtering of genotype data, 1367 cases (9 men) and 1658 controls (1156 men) were analyzed on a total of 2,067,645 SNPs.
RESULTS: Overall, 33 genomic regions (67 candidate SNPs) were associated with breast cancer risk at the p < 0(-6) level. Twenty of these regions contained defined genes, including one already associated with breast cancer risk: TOX3. With a lower threshold for preliminary significance to p < 10(-5), we identified 11 additional SNPs in FGFR2, a well-established breast cancer-associated gene. Ten candidate SNPs were selected, excluding those already associated with breast cancer, for technical validation as well as replication in 1668 samples from the same population. Only SNP rs345299, located in intron 1 of VAV3, remained suggestively associated (p-value, 1.16 x 10(-5)), but it did not associate with breast cancer risk in pooled data from two large, mixed-population cohorts.
CONCLUSIONS: This study indicated the role of TOX3 and FGFR2 as breast cancer susceptibility genes in BRCA1/2-wild-type breast cancer patients from Sardinian population.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
METHODS: We performed a genome-wide association study comparing 1431 Sardinian patients with non-familial, BRCA1/2-mutation-negative breast cancer to 2171 healthy Sardinian blood donors. DNA was genotyped using GeneChip Human Mapping 500 K Arrays or Genome-Wide Human SNP Arrays 6.0. To increase genomic coverage, genotypes of additional SNPs were imputed using data from HapMap Phase II. After quality control filtering of genotype data, 1367 cases (9 men) and 1658 controls (1156 men) were analyzed on a total of 2,067,645 SNPs.
RESULTS: Overall, 33 genomic regions (67 candidate SNPs) were associated with breast cancer risk at the p < 0(-6) level. Twenty of these regions contained defined genes, including one already associated with breast cancer risk: TOX3. With a lower threshold for preliminary significance to p < 10(-5), we identified 11 additional SNPs in FGFR2, a well-established breast cancer-associated gene. Ten candidate SNPs were selected, excluding those already associated with breast cancer, for technical validation as well as replication in 1668 samples from the same population. Only SNP rs345299, located in intron 1 of VAV3, remained suggestively associated (p-value, 1.16 x 10(-5)), but it did not associate with breast cancer risk in pooled data from two large, mixed-population cohorts.
CONCLUSIONS: This study indicated the role of TOX3 and FGFR2 as breast cancer susceptibility genes in BRCA1/2-wild-type breast cancer patients from Sardinian population.

- Monserrato
- 070 6754596